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ABSTRACT 

 

 

To be confident in the leap of faith, we have to accept that our old ways of turning data analysis 

into business recommendations was a bit naive. We had heard that correlation is not causation, 

but we effectively ignored that distinction. At best, we admitted that we were uncertain, dug a 

little more, or compared our results to intuition to build confidence in our conclusions. But this 

unstructured way of drawing conclusions is subject to biases, especially if we don’t exactly 

know what we are doing. Hence analyzing causal effects is very important.  

 

In this paper we have tried to introduce causal inference and related concepts from basics and 

took it forward into an application-based study on the two methods, for determining the 

estimate (ATE), namely IPTW (Inverse Probability Treatment Weighting) and 

TMLE(Targeted Maximum Likelihood Estimator).  

 

The methodological and implementation approach for both the methods are explored with the 

help of a simple simulation study and the bias reduction in the TMLE method has been 

portrayed. Given TMLE's appealing statistical properties, we consider it as a suitable method 

to be added to the analytical toolbox for estimation of causal effects in large population‐based 

observational studies. 
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CHAPTER  1 : INTRODUCTION AND OBJECTIVES 

 

1.1 Causal Inference 

A causal relationship is a relationship of cause and effect. A line of reasoning uses causal 

relationships to draw a conclusion. By exploring causal relationships, we can study the 

difference between fact and opinion. 

Causal inference is the process of determining the independent, actual effect of a particular 

phenomenon that is a component of a larger system. The main difference between causal 

inference and inference of association is that causal inference analyzes the response of an effect 

variable when a cause of the effect variable is changed. 

We study causation because we need to make sense of data, to guide actions and policies, and 

to learn from our success and failures. We need to estimate the effect of smoking on lung 

cancer, of education on salaries, of carbon emissions on the climate. Most ambitiously, we also 

need to understand how and why causes influence their effects, which is not less valuable. 

Causal inference and correlation are related concepts, but they are 

fundamentally different. Correlation refers to the strength and direction of the relationship 

between two variables, while causal inference seeks to establish whether that relationship is 

causal. A causal relationship is so powerful that it gives enough confidence in making 

decisions, preventing losses, solving optimal solutions, and so forth. 

 

1.2 RCT vs Observational 

A randomized clinical trial (RCT) is an experiment where every person in a trial is randomly 

assigned to either a treatment group or a control group. A clinical trial is performed in a 

controlled setting (e.g., a clinic or hospital), targets a specific disease, and has an event as a 

measure of trial outcome (e.g., cure/no cure). 

Randomized controlled trials (RCTs) are considered the gold standard for studying the efficacy 

of an intervention. Randomization highly increases the likelihood that both intervention and 

control groups have similar characteristics and that any remaining differences will be due to 

chance, effectively eliminating confounding. Any difference in the outcome between groups 

can then be attributed to the intervention and the effect estimates may be interpreted as causal. 
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Under randomization, association does imply causation (of course within the potential outcome 

framework with assumptions). 

However, many research questions cannot be studied in RCTs, as they can be too expensive 

and time-consuming (especially when studying rare outcomes), tend to include a highly 

selected population (limiting the generalizability of results) and in some cases randomization 

is not feasible (for ethical reasons). 

Observational studies are a fundamental part of epidemiological research. They are called 

observational studies because the investigator observes individuals without manipulation or 

intervention.  

Observational studies suffer less from limitations, as they simply observe unselected patients 

without intervening. Observational research may be highly suited to assess the impact of the 

exposure of interest in cases where randomization is impossible, for example, when studying 

the relationship between body mass index (BMI) and mortality risk. 

 

1.3 Confounding Effect 

Because of the lack of randomization, a fair comparison between the exposed and unexposed 

groups is not as straightforward due to measured and unmeasured differences in characteristics 

between groups. Certain characteristics that are a common cause of both the observed exposure 

and the outcome may obscure—or confound—the relationship under study, leading to an over, 

or underestimation of the true effect. 

A confounder is thus a third variable not the exposure, and not the outcome, that biases the 

measure of association we calculate for the particular exposure/outcome pair. 

For example, suppose a researcher collects data on ice cream sales and shark attacks and finds 

that the two variables are highly correlated. Does this mean that increased ice cream sales cause 

more shark attacks? That’s unlikely. The more likely cause is the confounding 

variable temperature. When it is warmer outside, more people buy ice-cream and more people 

go in the ocean. 
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To control for confounding in observational studies, various statistical methods have been 

developed that allow researchers to assess causal relationships between an exposure and 

outcome of interest under strict assumptions. Besides traditional approaches, such as 

multivariable regression and stratification, other techniques based on so-called propensity 

scores, have been increasingly used in the literature. 

 

1.4 Simpsons Paradox 

Simpson’s paradox is a fascinating phenomenon that illustrates the importance of causality in 

reasoning. Simpson’s Paradox is a statistical phenomenon where an association between two 

variables in a population emerges, disappears or reverses when the population is divided into 

subpopulations. For instance, two variables may be positively associated in a population, but 

be independent or even negatively associated in all subpopulations. 

Simpson’s paradox reminds researchers that causal inferences, particularly in nonexperimental 

studies, can be hazardous. Uncontrolled and even unobserved variables that would eliminate 

or reverse the association observed between two variables might exist. 

A common example of Simpson's paradox involves the batting averages of players in 

professional baseball. It is possible for one player to have a higher batting average than another 

player each year for a number of years, but to have a lower batting average across all of those 

years. 
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In the classical example used by Simpson (1951), a group of sick patients are given the option 

to try a new drug. Among those who took the drug, a lower percentage recovered than among 

those who did not. However, when we partition by gender, we see that more men taking the 

drug recover than do men are not taking the drug, and more women taking the drug recover 

than do women are not taking the drug! In other words, the drug appears to help men and 

women, but hurt the general population. It seems nonsensical, or even impossible—which is 

why, of course, it is considered a paradox. 

 

1.5 Propensity Score 

The propensity score (PS) was first defined by Rosenbaum and Rubin in 1983 as ‘the 

conditional probability of assignment to a particular treatment given a vector of observed 

covariates’. In other words, the propensity score gives the probability (ranging from 0 to 1) of 

an individual being exposed (i.e., assigned to the intervention or risk factor) given their baseline 

characteristics. 

We use the propensity score (or probability of getting a treatment given a set of covariates) as 

a balancing score. A balancing score is any function of the set of covariates that captures all 

the information of the set that is dependent on treatment. Such a balancing score would allow 

us to model the relation between the confounders and treatment in a relatively simple way. And 

the minimal expression of a balancing score is the propensity score. 

 

Propensity score analysis typically involves two stages:  

Stage 1- Estimate the propensity score, by e.g., a logistic regression or a machine learning 

method  

Stage 2- Given the estimated propensity score, estimate the causal effects through one of these 

methods: | Stratification | Weighting | Matching| Regression | Mixed procedure of the above. 

The aim of the propensity score in observational research is to control for measured 

confounders by achieving balance in characteristics between exposed and unexposed groups. 

The basic idea of propensity score is to focus on the prediction of treatments rather than on 

outcomes and to replace the confounding variables that play a role in the choice of a given 

treatment with a function of these covariates.  
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Two people receiving different treatments have the same propensity value, it means that they 

would have the same probability to receive treatment 1 or 2, randomly, and thus they may be 

more confidently compared.  

Statistical Definition of PS: 

The estimated propensity score, for subject i, (i = 1,…, N) is the conditional probability of 

being assigned to a particular treatment given a vector of observed covariates xi: 

               e(𝑥𝑖) = Pr (𝑧𝑖=1/𝑥𝑖) 

where,  

• 𝑧𝑖= 1, for treatment  

• 𝑧𝑖= 0, for control 

• 𝑥𝑖, the vector of observed covariates for the 𝑖𝑡ℎsubject 

Since the propensity score is a probability, it ranges in value from 0 to 1. 

Idea is that if we combine the individual confounders in a summary measure (propensity score) 

so that if you just control for propensity score indirectly you will be controlling for 

confounding. The propensity score–based methods are thus able to summarize all 

characteristics to a single covariate (the propensity score) and may be viewed as a data 

reduction technique. These methods are therefore warranted in analyses with either a large 

number of confounders or a small number of events. 

Methods of estimating Propensity Score: 

a) Logistic regression 

 Logistic regression is the most commonly used method for estimating propensity score 

 The model is used to predict the probability that an event occurs.    
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b) Classification and regression tree (CART) 

 

• CART (Classification And Regression Tree) is a variation of the decision tree 

algorithm. It can handle both classification and regression tasks. 

• CART was first produced by Leo Breiman, Jerome Friedman, Richard Olshen, and 

Charles Stone in 1984. 

• Not widely used as Logistic regression for estimating propensity scores because it may 

not be as readily understood  

• CART has advantageous properties for estimating propensity scores, including the 

ability to handle categorical, ordinal, continuous, and missing data. 
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CHAPTER 2 : METHODOLOGIES 

 

2.1 Inverse probability of treatment weighting (IPTW) 

Propensity Score Analysis Methods involves four methods majorly: 

 Matching 

 Stratification 

 Covariate Adjustment 

 Inverse probability of treatment weighting (IPTW) 

We are focusing on the IPTW method in our study. 

Key concepts of IPTW: 

 Inverse probability of treatment weighting (IPTW) can be used to adjust for 

confounding in observational studies. IPTW uses the propensity score to balance 

baseline patient characteristics in the exposed and unexposed groups by weighting 

each individual in the analysis by the inverse probability of receiving the actual 

exposure.  

 It is considered a good practice to assess the balance between exposed and 

unexposed groups for all baseline characteristics both before and after weighting. 

 An important methodological consideration is that of the extreme weights. These 

can be dealt with either weight stabilization or weight truncation or both. 

 To adjust for confounding measured over time in the presence of treatment-

confounder feedback, IPTW can be applied to appropriately estimate the parameters 

of marginal structural model. Weights are calculated at each time point as the 

inverse probability of receiving his/her exposure level, given an individual’s 

previous exposure history, the previous values of time-dependent confounder and 

baseline confounders. 

 In time-to-event analyses, inverse probability of censoring weights can be used to 

account for informative censoring by upweighting those remaining in the study, 

who have similar characteristics to those who were censored. 
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Statistical Methodology of IPTW: 

 let Zi be an indicator variable denoting whether the ith subject was treated; furthermore, 

let ei denote the propensity score for the ith subject. Weights can be defined as   

𝑤𝑖 =
𝑍𝑖
𝑒𝑖
+
(1 − 𝑍𝑖)

1 − 𝑒𝑖
 

 

 A subject's weight is equal to the inverse of the probability of receiving the treatment 

that the subject actually received. 

          

       The application of these weights to the study population creates a pseudopopulation in 

which confounders are equally distributed across exposed and unexposed groups. 

 

      Some more facts about IPTW: 

 Inverse probability of treatment weighting was first proposed by Rosenbaum (1987)  

 IPTW has been used in observational studies to reduce selection bias 

 IPTW may be sensitive to whether the propensity score has been accurately estimated 

  These weights assure that for each combination of baseline characteristics, the sum of 

contributions of all experimental and control patients are equal 

 Subjects in the comparison group who are more similar to those in the treatment group 

are given greater weight and those more dissimilar are downweighted. If the propensity 

scores are properly estimated, then the weighted covariate distributions between 

treatment groups should be similar and the average treatment effect can be estimated as 

the difference of weighted means. 

 

 Advantages and Limitations: 

              One of the advantages of using propensity score weighting, as opposed to matching, 

is that you’re able to include all patients; none of the patients are excluded because they can’t 

be matched to a patient in the other treatment arm. Including all the patients is especially 
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important when you have small sample sizes. Propensity score weighting allows you to 

leverage information from all patients included in your sample. If we want to estimate the 

average treatment effect assuming that every patient (both treated and comparison group 

patients) in the population would otherwise be offered the treatment, which is known as the 

average treatment effect (ATE), we use IPTW. In addition, whereas matching generally 

compares a single treatment group with a control group, IPTW can be applied in settings with 

a categorical or continuous exposures. Also, compared with propensity score stratification or 

adjustment using the propensity score, IPTW has shown to estimate hazard ratios with less 

bias. 

 

IPTW also has limitations. Some simulation studies have demonstrated that depending on the 

setting, propensity score– based methods such as IPTW perform not better than multivariable 

regression, and others have cautioned against the use of IPTW in studies with sample sizes of 

<150 due to underestimation of the variance (i.e., standard error, confidence interval and P-

values) of effect estimates. The IPTW is also sensitive to misspecifications of the propensity 

score model, as omission of interaction effects or misspecification of functional forms of 

included covariates may cause imbalanced groups, biasing the effect estimate. 

 

2.2 Average Treatment Effect (ATE) 

Assume that Yi denotes the outcome variable measured on the ith participant. 

• For each subject, the effect of treatment is defined to be  

     𝑌𝑖(1) − 𝑌𝑖(0)     

• The average treatment effect (ATE) is defined to be  

    E[𝑌𝑖(1) − 𝑌𝑖(0)] 

 

The ATE is the average effect, at the population level, of moving an entire population from 

untreated to treated. 

It is the mean difference in outcomes in a world in which everyone had received the 

treatment compared to a world in which everyone had not.  
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     Average Treatment Effect For IPTW: 

     Assume that Yi denotes the outcome variable measured on the ith participant. The estimate 

of the average treatment effect (ATE) is, 

ATE = 
1

𝑛
∑

𝑍𝑖𝑌𝑖

𝑒𝑖

𝑛
𝑖=1  − 

1

𝑛
∑

(1−𝑍𝑖)𝑌𝑖

1−𝑒𝑖

𝑛
𝑖=1  

where n denotes the number of participants in the full sample. 

2.3 Targeted Maximum Likelihood Estimation (TMLE) 

• Targeted Learning was proposed by van der Laan & Rubin in 2006 as an automated 

causal inference method.  

• TMLE is used to analyze observational data from a non-controlled experiment in a way 

that allows effect estimation even in the presence of confounding factors. 

• Targeted Maximum Likelihood Estimation (TMLE) is a semiparametric estimation 

framework to estimate a statistical quantity of interest. 

• Semiparametric estimation methods like TMLE can rely on machine learning to avoid 

making unrealistic parametric assumptions about the underlying distribution of the data 

(e.g., multivariate normality). 

It includes the following steps majorly: 

We consider Y is binary outcome, (which can also be continuous with a slight change in 

the algorithm) ; W is confounders (W1,W2,W3,..,Wn). A is Treatment (binary exposure of 

interest) – “control”-> A=0 ;      “treatment”->A=1 

Step 1: Estimate the Outcome using  

 

Step 2: Estimate the Probability of Treatment (propensity score)  

 

This step involves defining a function called clever covariate, which is given by 
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Step 3: Estimate the Fluctuation Parameter (ϵ) (it provides information about how much 

to change, or fluctuate, our initial outcome estimates.)   Optimizes the Bias-Variance 

Tradeoff. 

                

Step 4: Update the Initial Estimates of the Expected Outcome 

Step 5: Compute the Statistical Estimand of Interest 

We can compute the ATE as the mean difference in the updated outcome estimates under 

treatment and no treatment: 

 

 

Basic Introduction to SuperLearners: 

• Superlearning is a technique for prediction that involves combining many individual 

statistical algorithms (commonly called “machine learning” algorithms) to create a 

new, single prediction algorithm that is expected to perform at least as well as any of 

the individual algorithms. 

• Superlearning is also called stacking, stacked generalizations, and weighted ensembling 

by different specializations within the realms of statistics and data science. 

• The motivation for this type of ensembling is that a mix of multiple algorithms may be 

more optimal for a given data set than any single algorithm. For example, superlearners 

like random forests and LASSO improve predictive performance of the model. 

 

Bias-Variance Tradeoff 

Bias is the difference between the average prediction of our model and the correct value 

which we are trying to predict. Model with high bias pays very little attention to the training 

data and oversimplifies the model.  
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Whereas model with high variance pays a lot of attention to training data and does not 

generalize on the data which it hasn’t seen before. 

So, we need to find the right/good balance without overfitting and underfitting the data. 

This tradeoff in complexity is why there is a tradeoff between bias and variance. 

 

 

 

Predictive Ability of TMLE is shown by a graphical example: 

 

 

We see that Super Learner, estimates the true parameter value (indicated by the dashed 

vertical line) more accurately than GLM. Still, it is still less accurate than TMLE, and valid 

inference is not possible. TMLE achieves a less biased estimator and valid inference. 

TMLE does not balance the covariates or adjust the sample in anyway but it estimates 

potential outcomes for each individual using an outcome model and adjusts the difference 
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in the estimated potential outcome means using a function of the propensity score (called 

the "clever covariate"). 

In Targeted Maximum Likelihood Estimation (TMLE), the fluctuation parameter is used 

to adjust for variability in the outcome variable that is not explained by the treatment and 

covariates. The purpose of the fluctuation parameter is to reduce bias in the estimation of 

the treatment effect, particularly in settings where there may be unmeasured confounding 

or other sources of unexplained variability. 

The TMLE algorithm involves iteratively estimating the outcome regression model and the 

treatment probability model, and at each iteration, updating the estimate of the treatment 

effect based on the current estimates of these models. The fluctuation parameter is added 

to the outcome regression model at each iteration as a way to capture the unexplained 

variability in the outcome that is not accounted for by the treatment and covariates. 

By including a fluctuation parameter in the outcome regression model, TMLE can account 

for potential misspecification of the model and improve the efficiency and robustness of 

the treatment effect estimate. However, it is important to note that the choice of the 

fluctuation parameter can have an impact on the results and it may be necessary to try 

different values or functional forms of the parameter to optimize the performance of the 

TMLE algorithm. 

Two frequently used alternatives to estimating the ATE are G-computation and Inverse 

Probability of Treatment Weighting. In general, neither of them yield valid standard errors 

unless a-priori specified parametric models are used, and this reliance on parametric 

assumptions can bias the results. There are many simulation studies that show this. TMLE 

is found to perform better than these. 
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2.4 TMLE vs IPTW 

 

 

 

 

  



 
 

24 
 

CHAPTER 3 : ANALYSIS AND INTERPRETATION 

 

3.1 Data Generation 

• We plan to estimate the ATE for cancer patients treated with monotherapy (A = 1) 

versus dual therapy (A = 0) while controlling for confounder (W) and outcome as 

death(Y). 

• We consider W as confounder Age. 

• Treatment and Outcome are considered to be binary whose probability is defined using 

inverse of the logit function. 

 

Controlling for confounding bias is crucial in causal inference study. Distinct methods are 

currently employed to mitigate the effects of confounding bias. We conduct a simulation study 

to compare the relative performance results obtained by using IPTW and TMLE method to 

estimate the average treatment effect. Our simulations are in the context of a binary treatment, 

a binary outcome and a baseline confounder.  

Cancer treatment is independent of the potential mortality outcomes after conditioning on W. 

Also assume that within strata of W, every patient had a nonzero probability of receiving either 

of the 2 treatment conditions, i.e., 0 < P(A = 1|W) < 1. We assume consistency and 

noninterference, meaning that the counterfactual outcome of one subject was not influenced by 

the treatment of any other. If we believe these assumptions to hold and the sample size to be 

sufficient, we may interpret our estimate of the ATE. 

W is generated as a Bernoulli variable with probability 0.65. The treatment variable and the 

potential outcomes were generated as binary indicators using log‐linear models. 

First, we generated a sample of 5 million patients to estimate the true ATE. Afterwards, we 

generated a sample of 10,000 patients used to illustrate the implementation of the algorithm 

and run simulations. 

The true ATE implies that the risk of death among cancer patients treated with monotherapy is 

calculated-percentage higher than for those treated with dual therapy considering only one 

confounder that is age. 
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At the end of the illustration, we present the results of 1000 Monte Carlo simulations with a 

sample size of 1000 patients aiming to calculate the mean bias for both IPTW and TMLE 

method. 

 

3.2 Final  R-Code 

# Load the required packages 

library(earth) 

library(tidyverse) # for data manipulation 

library(SuperLearner) # for ensemble learning 

library(WeightIt)# for weighting 

library(dplyr) 

library(magrittr) 

 

set.seed(7) # for reproducible results 

sl_libs <- c('SL.glmnet', 'SL.ranger', 'SL.earth') # a library of machine learning algorithms 

(penalized regression, random forests, and multivariate adaptive regression splines) 

 

generate_data <- function(n){  

  W2 <- rbinom(n, size = 1, prob = 0.65) # binary confounder W2 

  A  <- rbinom(n, size = 1, prob = plogis(-5 + 0.05*W2 )) # binary treatment depends on 

confounders 

#plogis(x) represents the inverse logit function 

  # counterfactual 

  Y.1 <- rbinom(n, size = 1, prob = plogis(-1 + 1 + 0.35*W2)) 

  Y.0 <- rbinom(n, size = 1, prob = plogis(-1 + 0 + 0.35*W2)) 

  # observed outcome 

  Y <- Y.1*A + Y.0*(1 - A) 

  return(tibble(Y, W2, A,Y.1,Y.0)) 

} 
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# True ATE 

set.seed(7777) 

ObsData <- generate_data(n = 5000000) 

True_EY.1 <- mean(ObsData$Y.1) 

True_EY.0 <- mean(ObsData$Y.0) 

True_ATE <- True_EY.1 - True_EY.0; True_ATE 

# 0.238578 TRUE_ATE 

 

# Initialize arrays to store iptw ate 

iptwate_arr <- numeric(1000) 

# Initialize arrays to store tmle ate 

tmleate_arr <- numeric(1000) 

# Initialize arrays to store biases 

bias1_arr <- numeric(1000) 

bias2_arr <- numeric(1000) 

 

# Monte Carlo simulation loop 

for(i in 1:1000) { 

# Data for simulation 

ObsData <- generate_data(n = 10000) 

Y <- ObsData$Y 

 

# Estimate the treatment weights using IPTW 

weights <- weightit(A ~ W2 , data = ObsData, method = "ps", estimand = "ATE") 

 

# Calculate the ATE using the weighted data 

weighted <- ObsData %>% mutate(weight = weights$weights) 

weighted_summary <- weighted %>% group_by(A) %>% summarize(mean_Y = 

weighted.mean(Y, weight)) 
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iptw_ate <- weighted_summary[weighted_summary$A == 1, "mean_Y"] - 

weighted_summary[weighted_summary$A == 0, "mean_Y"] 

iptw_ate=as.numeric(iptw_ate) 

 

#TMLE 

W_A <- dplyr::select(ObsData, -Y,-Y.1,-Y.0) # remove the outcome to make a matrix of 

predictors (A, W1, W2, W3, W4) for SuperLearner 

 

### Step 1: Estimate Q 

 

Q <- SuperLearner(Y = Y, # Y is the outcome vector 

                  X = W_A, # W_A is the matrix of W1, W2, W3, W4, and A 

                  family=binomial(), # specify we have a binary outcome 

                  SL.library = sl_libs) # specify our superlearner library of LASSO, RF, and MARS 

Q_A <- as.vector(predict(Q)$pred) # obtain predictions for everyone using the treatment they 

actually received 

W_A1 <- W_A %>% mutate(A = 1)  # data set where everyone received treatment 

Q_1 <- as.vector(predict(Q, newdata = W_A1)$pred) # predict on that everyone-exposed data 

set 

W_A0 <- W_A %>% mutate(A = 0) # data set where no one received treatment 

Q_0 <- as.vector(predict(Q, newdata = W_A0)$pred) 

dat_tmle <- tibble(Y = ObsData$Y, A = ObsData$A, Q_A, Q_0, Q_1) 

 

### Step 2: Estimate g and compute H(A,W) 

 

A <- ObsData$A 

W <- dplyr::select(ObsData, -Y,-A) # matrix of predictors that only contains the confounders 

W1, W2, W3, and W4 

g <- SuperLearner(Y = A, # outcome is the A (treatment) vector 

                  X = W, # W is a matrix of predictors 

                  family=binomial(), # treatment is a binomial outcome 
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                  SL.library=sl_libs) # using same candidate learners; could use different learners 

 

g_w <- as.vector(predict(g)$pred) # Pr(A=1|W) 

H_1 <- 1/g_w 

H_0 <- -1/(1-g_w) # Pr(A=0|W) is 1-Pr(A=1|W) 

dat_tmle <- # add clever covariate data to dat_tmle 

  dat_tmle %>% 

  bind_cols( 

    H_1 = H_1, 

    H_0 = H_0) %>% 

  mutate(H_A = case_when(A == 1 ~ H_1, # if A is 1 (treated), assign H_1 

                         A == 0 ~ H_0))  # if A is 0 (not treated), assign H_0 

 

### Step 3: Estimate fluctuation parameter 

glm_fit <- glm(Y ~ -1 + offset(qlogis(Q_A)) + H_A, data=dat_tmle, family=binomial) # fixed 

intercept logistic regression 

eps <- coef(glm_fit) # save the only coefficient, called epsilon in TMLE lit 

 

### Step 4: Update Q's 

H_A <- dat_tmle$H_A # for cleaner code in Q_A_update 

Q_A_update <- plogis(qlogis(Q_A) + eps*H_A) # updated expected outcome given treatment 

actually received 

 

Q_1_update <- plogis(qlogis(Q_1) + eps*H_1) # updated expected outcome for everyone 

receiving treatment 

Q_0_update <- plogis(qlogis(Q_0) + eps*H_0) # updated expected outcome for everyone not 

receiving treatment 

 

### Step 5: Compute ATE 

tmle_ate <- mean(Q_1_update - Q_0_update) # mean diff in updated expected outcome 

estimates 
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### Step 6: compute standard error, CIs and pvals 

 

infl_fn <- (Y - Q_A_update) * H_A + Q_1_update - Q_0_update - tmle_ate # influence 

function 

tmle_se <- sqrt(var(infl_fn)/nrow(ObsData)) # standard error 

conf_low <- tmle_ate - 1.96*tmle_se # 95% CI 

conf_high <- tmle_ate + 1.96*tmle_se 

pval <- 2 * (1 - pnorm(abs(tmle_ate / tmle_se))) # p-value at alpha .05 

 

#Calculating Bias 

bias1 <- abs(iptw_ate - True_ATE) 

bias2 <- abs(tmle_ate - True_ATE) 

 

# Store iptw ate in arrays 

iptwate_arr[i] <- iptw_ate 

# Store tmle ate in arrays 

tmleate_arr[i] <- tmle_ate 

# Store biases in arrays 

bias1_arr[i] <- bias1 

bias2_arr[i] <- bias2 

} 

 

# Calculate mean iptw ate 

mean_iptw <- mean(iptwate_arr) 

# Calculate mean tmle ate 

mean_tmle <- mean(tmleate_arr) 

# Calculate mean biases 

mean_bias1 <- mean(bias1_arr) 

mean_bias2 <- mean(bias2_arr) 
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#output 

cat("Mean ate for iptw:", mean_iptw, "\n") 

cat("Mean ate for tmle:", mean_tmle, "\n") 

cat("Mean bias for iptw:", mean_bias1, "\n") 

cat("Mean bias for tmle:", mean_bias2, "\n") 

 

------------------------------------------------------------------------------------------------ 

 

There are R packages so that we don’t have to hand code TMLE ourselves. R packages to 

implement the TMLE algorithm include tmle, tmle3, ltmle, drtmle, and lmtp. 

Similarly, for IPTW we have packages like WeightIt. WeightIt is a one-stop package to 

generate balancing weights for point and longitudinal treatments in observational studies. 

 

3.3 Results And Summary 

For single computation: 

True_ATE 0.238578 

Iptw_ate 0.2338803 

tmle_ate 0.2366373 

 

 

After Monte Carlo Simulation (To calculate BIAS): 

Mean ATE for iptw: 0.2390988  

Mean ATE for tmle: 0.2398114  

 

 

Mean bias for IPTW 0.04706625 

Mean bias for TMLE 0.03726208 
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 The true ATE implies that the risk of death among cancer patients treated with 

monotherapy is approximately 23.8% higher than for those treated with dual therapy 

considering only the age as confounder.  

 

For a sample of 10000, 

 The IPTW - ATE is found to be 23.4% approximately 

 The TMLE - ATE is found to be 23.7% approximately 

 

 

After 1000 Monte Carlo Simulation over a sample of 10000, 

 The Mean Bias for IPTW method (compared to True ATE) is approximately 4.7% 

 The Mean Bias for TMLE method (compared to True ATE) is approximately 3.7% 

 

Under the single computation, we see that the TMLE_ATE is nearer to that of TRUE_ATE 

when compared with the IPTW_ATE. Hence, we can say that TMLE leads to a more reliable 

value in this case. 

 

TMLE reduces the bias as compared to IPTW in our study. TMLE has been proven to provide 

better estimates using superlearners and our attempt to implement the same proves it right. In 

a way IPTW is a subset of TMLE as we see the methodology. The concept of IPTW is a part 

of TMLE. The model misspecification is taken care of in the case of TMLE and thus this 

method has several advantages over other methods. 

 

In summary, we have provided an overview with R code considering a very simple data with 

one confounder only, for implementing IPTW and TMLE to estimate the ATE for a binary 

outcome in observational studies. TMLE's appealing statistical properties convinces us to 

consider it a suitable method for estimation of causal effects in large population‐based 

observational studies. 
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Abstract
India is a rising economic power at a global level. So, infla-

tion of any price change at an institutional level is an impor-
tant factor in viewing the overall economic view of a country.
Wholesale Price Index (WPI) helps in calculating these price
changes of goods in the stages before the retail level. The
Wholesale Price Index (WPI) model is dependent on time;
hence we perform time-series analysis. In order to understand
the model, we need to analyse the price changes over a period
of time. For further studies, we need to find an appropriate
model to account for these changes.This model can be found
by using the auto covariance function and the partial auto co-
variance function of the model. The model will have a lot of
noise and so to get more accuracy a box cox transformation is
used to make the model more accurate. This model then needs
to be used to forecast the WPI which will help us in calculating
the growth rate and hence predict the inflation at an institu-
tional level, for a future time. However, discrepancies due to
customer inflation will not be included in this model. So we
can take the Consumer Price Index also into consideration and
forecast the data to create two model for better understanding
of the Inflation in India.
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1. Introduction

A time series is nothing but a sequence of various data points that occurred in a
successive order for a given period of time. Time series analysis is one of the
important feature for prediction and forecasting analysis which is specific to time
based datasets. Its used in

• Analyzing the historical dataset and its patterns.

• Understanding and matching the current situation with patterns derived from
the previous stage.

• Understanding the factor or factors influencing certain variable(s) in different
periods.

With help of “Time Series” we can prepare numerous time-based analyses and
results.

• Forecasting

• Segmentation

• Classification

• Descriptive Analysis

• Intervention Analysis

1.1 Components of Time Series Analysis

The various components of time series analysis are:

• Trend

• Seasonality

• Cyclical

• Irregularity

To further elaborate on this:
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• Trend: In which there is no fixed interval and any divergence within the
given dataset is a continuous timeline. The trend would be Negative or
Positive or Null Trend

• Seasonality: In which regular or fixed interval shifts within the dataset in a
continuous timeline. Would be bell curve or saw tooth

• Cyclical:In which there is no fixed interval, uncertainty in movement and its
pattern

• Irregularity:Unexpected situations/events/scenarios and spikes in a short
time span.

Let’s discuss the time series’ data types and their influence. While discussing TS
data-types, there are two major types.

• Stationary

• Non-Stationary

• Stationary: A dataset should follow the below thumb rules, without having
Trend, Seasonality, Cyclical, and Irregularity component of time series

– The MEAN value of them should be completely constant in the data
during the analysis

– The VARIANCE should be constant with respect to the time-frame

– The COVARIANCE measures the relationship between two variables

• Non-Stationary: It is just the opposite of Stationary, as the name suggests.

1.2 Objectives

The objective of my project is to collect the WPI of India from April 1980 to
August 2021 and then link it to a single base year. We will understand what is
linking factor and how it is used. Then model selection of the dataset is done and
also, we check the stationarity of the data. Fitting of the model is done using the
appropriately selected model. Lastly we forecast the model and check the accuracy
of it keeping in mind to forecast the WPI of India for a future month.
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1.3 Wholesale Price Index (WPI)

A wholesale price index (WPI) is an index that measures and tracks the changes in
the price of goods in the stages before the retail level. This refers to goods that are
sold in bulk and traded between entities or businesses (instead of between
consumers). It is to be accurate is the price of the representative basket of
wholesale goods. Usually expressed as a ratio or percentage, the WPI shows the
included good’s average price change.It is often seen as one of the indicator of a
country’s level of inflation.

It also influences stock and fixed price markets. The WPI is published by the
Economic Advisor in the Ministry of Commerce and Industry. The Wholesale Price
Index focuses on the price of goods traded between corporations, rather than the
goods bought by consumers, which is measured by the Consumer Price Index. The
purpose of the WPI is to monitor price movements that reflect supply and demand
in industry, manufacturing and construction. This helps in analyzing both
macroeconomic and microeconomic conditions.
Wholesale price indices (WPIs) are reported monthly in order to show the average
price changes of goods. The total costs of the goods being considered in one year
are then compared with the total costs of goods in the base year. The total prices
for the base year are equal to 100 on the scale. Prices from another year are
compared to that total and expressed as a percentage of change.
A WPI typically takes into account commodity prices, but the products included
vary from country to country. They are also subject to change, as needed, to better
reflect the current economy. Some small countries only compare the prices of 100 to
200 products, while larger countries tend to include thousands of products in their
WPIs. Price data used to construct the indexes are usually gathered from business
firms by mail, less frequently from trade journals and trade associations, and also
from government purchasing agents. Weights are generally based on relative sales
volume. Data from censuses of production (manufacturing, mining, agriculture,
etc.) are used for weights when they are available.

1.4 Major Components of WPI

1. Primary articles is a major component of WPI, further subdivided into Food
Articles and Non-Food Articles.

2. Food Articles include items such as Cereals, Paddy, Wheat, Pulses,

5



Vegetables, Fruits, Milk, Eggs, Meat and Fish, etc.

3. Non-Food Articles include Oil Seeds, Minerals and Crude Petroleum

4. The next major basket in WPI is Fuel and Power, which tracks price
movements in Petrol, Diesel and LPG

5. The biggest basket is Manufactured Goods. It spans across a variety of
manufactured products such as Textiles, Apparels, Paper, Chemicals, Plastic,
Cement, Metals, and more.

6. Manufactured Goods basket also includes manufactured food products such
as Sugar, Tobacco Products, Vegetable and Animal Oils, and Fats.

1.5 Main Uses of WPI

1. to provide estimates of inflation at the wholesale transaction level for the
economy as a whole. This helps in timely intervention by the Government to
check inflation in particular, in essential commodities, before the price
increase spill over to retail prices.

2. WPI is used as deflator for many sectors of the economy including for
estimating GDP by Central Statistical Organisation (CSO).

3. WPI is also used for indexation by users in business contracts.

4. Global investors also track WPI as one of the key macro indicators for their
investment decisions.

1.6 Consumer Price Index (CPI)

Consumer Price Index or CPI is an index measuring the retail inflation in the
economy by collecting the changes of the most common goods and services used by
consumers. A Consumer Price Index (CPI) is designed to measure the changes over
time in general level of retail prices of selected goods and services that households
purchase for the purpose of consumption. Such changes affect the real purchasing
power of consumers’ income and their welfare. The CPI measures price changes by
comparing, through time, the cost of a fixed basket of commodities. The basket is
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based on the expenditures of a target population in a certain reference period. Since
the basket contains commodities of unchanging or equivalent quantity and quality,
the index reflects only pure price. Traditionally, CPI numbers were originally
introduced to provide a measure of changes in the living costs of workers, so that
their wages could be compensated to the changing level of prices. However, over
the years, CPIs have been widely used as a macroeconomic indicator of inflation,
and also as a tool by Government and Central Bank for targeting inflation and
monitoring price stability. CPI is also used as deflators in the National Accounts.
Therefore, CPI is considered as one of the most important economic indicators.

The Reserve Bank of India and other statistical agencies study CPI so as to
understand the price change of various commodities and keep a tab on inflation.
CPI is also a helpful pointer in understanding the real value of wages, salaries and
pensions, the purchasing power of a country’s currency; and regulating prices.

In India, there are four consumer price index numbers, which are calculated, and
these are as follows:

• CPI for Industrial Workers (IW)

• CPI for Agricultural Labourers (AL)

• CPI for Rural Labourers (RL) and

• CPI for Urban Non-Manual Employees (UNME).

While the Ministry of Statistics and Program Implementation collects CPI
(UNME) data and compiles it, the remaining three are collected by the Labour
Bureau in the Ministry of Labour.

1.7 Major Components of CPI

• Food and beverages

• Pan , Tobacco and intoxicants

• Clothing and footwear.

• Housing
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• Fuel and Light

• Miscellaneous items like transport and communication, Health , Education,
Recreation and amusement, personal care and effects etc.

1.8 Wholesale Price Index (WPI) Vs Consumer Price Index
(CPI)

WPI reflects the change in average prices for bulk sale of commodities at the first
stage of transaction while CPI reflects the average change in prices at retail level
paid by the consumer.

The prices used for compilation of WPI are collected at ex-factory level for
manufactured products, at ex-mine level for mineral products and mandi level for
agricultural products. In contrast, retail prices applicable to consumers and
collected from various markets are used to compile CPI.

The reasons for the divergence between the two indices can also be partly
attributed to the difference in the weight of food group in the two baskets. CPI
Food group has a weight of 39.1 per cent as compared to the combined weight of
24.4 per cent (Food articles and Manufactured Food products) in WPI basket. The
CPI basket consists of services like housing, education, medical care, recreation etc.
which are not part of WPI basket. A significant proportion of WPI item basket
represents manufacturing inputs and intermediate goods like minerals, basic metals,
machinery etc. whose prices are influenced by global factors but these are not
directly consumed by the households and are not part of the CPI item basket.

Thus even significant price movements in items included in WPI basket need not
necessarily translate into movements in CPI in the short run. The rise or fall in
prices at wholesale level spill over to the retail level after a lag. Similarly, the
movement in prices of non-tradable items included in the CPI basket widens the
gap between WPI and CPI movements. The relative price trends of tradable vis a
vis non-tradable is an important explanatory factor for divergence in the two
indices in the short term.
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1.9 Data Source

The data used over here has also been collected from the
https://eaindustry.nic.in/ site. It was found in many fragments over different
base year as published by the Office of Economic Advisor of India.

The CPI Data has been found from the site
https://fred.stlouisfed.org/series/INDCPIALLMINMEI#0 and the base year
has been changed to 1970-71.

1.10 Linking Factor

To maintain continuity in the time series data on Wholesale Price Index, there is a
need for a linking factor so that the new series, when released, may be compared
with the outgoing one. For this purpose, there are several methods available in the
literature for linking a new series with an old one. Some of the most common and
widely used methods among these are:

• Arithmetic conversion method

• Ratio Method

• Regression Method

There are three commonly used methods for linking new WPI series with the old
one:

1. Arithmetic conversion method: The relationship between indices in the
new series(x) and the old series(y) is assumed to be linear, i.e., y=cx, where c
is the conversion factor. Hence, c is calculated using y(bar) and x(bar).
Generally x(bar) is 100

2. Ratio method: In this method, month wise ratios of new indices and old
indices are calculated first and then their average is taken as linking factor.

3. Regression method: In this method, the relation is based on y=a+bx ,
where a and b are regression coefficients.
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As we are discussing about linking the dataset its important to know what is the
base year.

Base year refers to the base point in time of a time series. A base year is used for
comparison in the measure of a business activity or economic index.

Over here we have used the ratio method by using the last one as 100 and
converting it and linking the fragmented datasets and made it into a single dataset
for further use.

1.11 Base Year and Growth Rates

Many financial ratios are based on growth because analysts want to know how
much a particular number changes from one period to the next. The growth rate
equation is (Current Year - Base Year) / Base Year. For example, for a WPI to
understand Inflation from it we need to find the growth rates of the dataset.

Now, as we have obtained the final dataset, we need to understand it and see how
it is. For this we have to plot the data and see it and understand the different
components which will help in model selection of the dataset.

First, we can decompose the dataset into the components of trend, seasonal,
cyclical and random.

Then we have to find the parameters for our model building by which we can
identify the model we need to use for the dataset.

1.12 Parameters of the Model

1. Autoregressive Component: AR stands for autoregressive. Autoregressive
parameter is denoted by p. When p =0, it means that there is no
auto-correlation in the series. When p=1, it means that the series
auto-correlation is till one lag.

2. Integrated Component: In ARIMA time series analysis, integrated is
denoted by d. Integration is the inverse of differencing. When d=0, it means
the series is stationary and we do not need to take the difference of it. When
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d=1, it means that the series is not stationary and to make it stationary, we
need to take the first difference. When d=2, it means that the series has been
differenced twice. Usually, more than two time difference is not reliable.

3. Moving Average Component: MA stands for moving the average, which
is denoted by q. In ARIMA, moving average q=1 means that it is an error
term and there is auto-correlation with one lag.

To find the parameters, we need to plot the ACF and PACF of the time series.
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2. Methodologies

2.1 ACF

Let xt denote the value of a time series at time t. The ACF of the series gives
correlations between xt and xt−h for h = 1, 2, 3, etc. Theoretically, the
autocorrelation between xt and xt−h equals,

covariance(xt, xt−h)

std.dev(xt) ∗ std.dev(xt−h)
=
covariance(xt, xt−h)

var(xt)

The denominator in the second formula occurs because the standard deviation of a
stationary series is the same at all times.

The last property of a weakly stationary series says that the theoretical value of
autocorrelation of particular lag is the same across the whole series. An interesting
property of a stationary series is that theoretically it has the same structure
forwards as it does backward.

Many stationary series have recognizable ACF patterns. Most series that we
encounter in practice, however, is not stationary. A continual upward trend, for
example, is a violation of the requirement that the mean is the same for all t.
Distinct seasonal patterns also violate that requirement.

2.2 PACF

In general, a partial correlation is a conditional correlation. It is the correlation
between two variables under the assumption that we know and take into account
the values of some other set of variables. For instance, consider a regression context
in which y is the response variable and x1, x2, and x3 are predictor variables. The
partial correlation between y and x3 is the correlation between the variables
determined taking into account how both y and x3 are related to x1 and x2.

In regression, this partial correlation could be found by correlating the residuals
from two different regressions:
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1. Regression in which we predict y from x1 and x2,

2. Regression in which we predict x1 from x1 and x2. Basically, we correlate the
“parts” of y and x3 that are not predicted by x1 and x2.

More formally, we can define the partial correlation just described as

Covariance (y, x3 | x1, x2)√
Variance (y | x1, x2) Variance (x3 | x1, x2)

y = β0 + β1x
2 and y = β0 + β1x+ β2x

2

In the first model, β1 can be interpreted as the linear dependency between x2 and
y. In the second model, β1 would be interpreted as the linear dependency between
x2 and y WITH the dependency between x and y already accounted for.

For a time series, the partial autocorrelation between xt and xt−h is defined as the
conditional correlation between xt and xt−h, conditional on xt−h+1, ... , xt−1, the
set of observations that come between the time points t and t-h.

• The 1st order partial autocorrelation will be defined to equal the 1st order
autocorrelation.

• The 2nd order (lag) partial autocorrelation is

Covariance (xt, xt−2 | xt−1)√
Variance (xt | xt−1) Variance (xt−2 | xt−1)

This is the correlation between values two time periods apart conditional on
knowledge of the value in between. (By the way, the two variances in the
denominator will equal each other in a stationary series.)

• The 3rd order (lag) partial autocorrelation is

Covariance (xt, xt−3 | xt−1, xt−2)√
Variance (xt | xt−1, xt−2) Variance (xt−3 | xt−1, xt−2)

And so on for any lag.
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2.3 Augmented Dickey-Fuller Test

We consider the stochastic process of form

yi = ∅yi−1 + εi

where |ϕ| ≤ 1 and εj is white noise. If |ϕ| = 1, we have what is called a unit root.
In particular, if ϕ = 1, we have a random walk (without drift), which is not
stationary. In fact, if |ϕ| = 1, the process is not stationary, while if |ϕ| < 1, the
process is stationary. We won’t consider the case where |ϕ| > 1 further since in this
case the process is called explosive and increases over time.

This process is a first-order autoregressive process, AR(1), which we study in more
detail in Autoregressive process. We will also see why such processes without a unit
root are stationary and why the term "root" is used.

The Dickey-Fuller test is a way to determine whether the above process has a unit
root. The approach used is quite straightforward. First calculate the first
difference, i.e.

yi − yi−1 = ∅yi−1 + εi − yi−1

i.e. yi − yi−1 = (∅ − 1)yi−1 + εi If we use the delta operator, defined by
∆yi = yi − yi−1 and set β = ∅− 1, then the equation becomes the linear regression
equation

∆yi = βyi−1 + εi

where β ≤ 0 and so the test for ϕ is transformed into a test that the slope
parameter β = 0. Thus, we have a one-tailed test (since β can’t be positive) where
H0 : β = 0 (equivalent to ∅ = 1 ) H1 : β < 0 (equivalent to ∅ < 1 ) Under the
alternative hypothesis, if b is the ordinary least squares (OLS) estimate of β, and so
∅-bar = 1 + b is the OLS estimate of ∅, then for large enough n,

√
n(∅ − ∅̂) ∼ N (0, s, e.)

Where,s.e. =
√

1− ∅2

We can use the usual linear regression approach, except that when the null
hypothesis holds the t coefficient doesn’t follow a normal distribution and so we
can’t use the usual t-test. Instead, this coefficient follows a tau distribution, and so
our test consists of determining whether the tau statistic τ (which is equivalent to
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the usual t statistic) is less than τcrit based on a table of critical tau statistics
values shown in Dickey-Fuller Table.

If the calculated τ value is less than the critical value in the table of critical values,
then we have a significant result; otherwise, we accept the null hypothesis that
there is a unit root and the time series is not stationary. There are the following
three versions of the Dickey-Fuller test:

Type o No constant, no trend ∆yi = β1yi−1 + εi
Type 1 Constant, no trend ∆yi = β0 + β1yi−1 + εi
Type 2 Constant and trend ∆yi = β0 + β1yi−1 + β2i+ εi

Each version of the test uses a different set of critical values, as shown in the
Dickey-Fuller Table. It is important to select the correct version of the test for the
time series being analyzed. Note that the type 2 test assumes there is a constant
term (which may be significantly equal to zero).

Stationarity can be checked by performing an Augmented Dickey-Fuller (ADF) test:

X p-value > 0.05 : Fail to reject the null hypothesis (HO), the data has a unit root
and is non-stationary.

X p-value ≤ 0.05 : Reject the null hypothesis (HO), the data does not have a unit
root and is stationary.

2.4 AR Model

In a simple linear regression model, the predicted dependent variable is modelled as
a linear function of the independent variable plus a random error term.

yi = β0 + β1xi + εi

A first-order autoregressive process, denoted AR(1), takes the form

yi = φ0 + φ1yi−1 + εi

Thinking of the subscripts i as representing time, we see that the value of y at time
i+ 1 is a linear function of y at time i plus a fixed constant and a random error

15



term. Similar to the ordinary linear regression model, we assume that the error
terms are independently distributed based on a normal distribution with zero mean
and a constant variance σ2 and that the error terms are independent of the y
values. Thus

εi ∼ N(0, σ)

cov (εi, εj) = 0 for i 6= j cov (εi, yj) = 0 for all i, j

It turns out that such a process is stationary when |ϕ1| < 1, and so we will make
this assumption as well. Note that if |ϕ1| = 1 we have a random walk.

Similarly, a second-order autoregressive process, denoted AR(2), takes the
form

yi = φ0 + φ1yi−1 + φ2yi−2 + εi

and a p-order autoregressive process, denoted AR(p), takes the form

yi = φ0 + φ1yi−1 + φ2yi−2 + · · ·+ φpyi−p + εi

2.5 MA Model

Time series models known as ARIMA models may include autoregressive terms
and/or moving average terms. Previously, we saw that an autoregressive term in a
time series model for the variable xt−1 is a lagged value of xt. For instance, a lag 1
autoregressive term is xt−1 (multiplied by a coefficient). This lesson defines moving
average terms.

A moving average term in a time series model is a past error (multiplied by a
coefficient).

Let wt ∼ N (0, σw
2), meaning that the wt are identically, independently

distributed(iid), each with a normal distribution having mean 0 and the same
variance.

The 1st order moving average model, denoted by MA(1) is:

xt = µ+ wt + θ1wt−1
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The 2nd order moving average model, denoted by MA(2) is:

xt = µ+ wt + θ1wt−1 + θ2wt−2

The qth order moving average model, denoted by MA(q) is:

xt = µ+ wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q

2.6 ARMA Model

An autoregressive moving average (ARMA) process consists of both
autoregressive and moving average terms. If the process has terms from both an
AR(p) and MA(q) process, then the process is called ARMA (p, q) and can be
expressed as

yi = φ0 + φ1yi−1 + φ2yi−2 + · · ·+ φpyi−p + εi + θ1εi−1 + · · ·+ θqεi−q

or, yi = φ0 +

p∑
j=1

φjyi−j + εi +

q∑
j=1

θjεi−j

We can define an ARMA (p, q) process with zero mean by removing the constant
term (i.e. ϕ0 ) and saying that y1, . . . , yn has an ARMA(p, q) process with mean µ
if the time series z1, . . . , zn has an ARMA(p, q) process with zero mean where
zi = yi,−µ.

If we include the constant term, then as in the AR(p) case, for a stationary
ARMA(p, q) process

µ =
φ0

1−
∑p

j=1 φj

An equivalent expression for an ARMA(p, q) process with zero mean is

yi −
p∑

j=1

φjyi−j = εi +

q∑
j=1

θjεi−j

17



which can be expressed using the lag (or backshift) operator as follows

φ(L)yi = θ(L)εi

or even as
yi =

θ(L)

φ(L)
εi

2.7 ARIMA

An autoregressive integrated moving average (ARIMA) process (aka a
Box-Jenkins process) adds differencing to an ARMA process.

2.8 SARIMA

The seasonal ARIMA model incorporates both non-seasonal and seasonal factors
in a multiplicative model. One shorthand notation for the model is

ARIMA(p, d, q)× (P,D,Q)S

with p = non-seasonal AR order, d = non-seasonal differencing, q = nonseasonal
MA order, P = seasonal AR order, D = seasonal differencing, Q = seasonal MA
order, and S = time span of repeating seasonal pattern.

Without differencing operations, the model could be written more formally as

(1) Φ
(
BS
)
ϕ(B) (xt − µ) = Θ

(
BS
)
θ(B)wt

But over here I have used the dummy variables α1, α2, . . . .α11 to indicate seasonal
variation with the original ARMA model. Which is

yi =
11∑
s=1

αsIs,i +

p∑
j=1

∅jyi−j +

q∑
j=1

θjεi−j + εi
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2.9 Identification Of the Model

Calculate ACF and PACF: As we have seen, AR processes have ACF values
that converge to zero as the lag increases. MA processes have PACF values that
converge to zero as the lag increases. The order of the process may not be obvious
using this approach.

AR(p) processes have PACF values that are small (near zero) for lags > p. MA(q)
processes have ACF values that are small for lags > q.

If the ACF and PACF values don’t seem to converge to zero, then differencing may
be needed.

If all the ACF values are near zero, then the time series is probably random. We
can model such processes as yi = ϕ0 + εi (white noise process).

When all the ACF values of first differences are near zero, then the time series is
probably a random walk, which can be modelled as yi = ϕ0 + yi−1 + εi .

19



3. Results And Discussion

We have understood the meaning of the WPI and CPI. We have found the data to
be used. The WPI data used over here has also been collected from the
https://eaindustry.nic.in/ site. It was found in many fragments over different
base year as published by the Office of economic Advisor of India. We have made
this dataset into a continuous dataset by the use of Linking Factor. The CPI Data
has been found from https://fred.stlouisfed.org/series/INDCPIALLMINMEI#0
this site and the base year has been changed to 1970-71 from 2015-16.

(i) We have plotted the Datasets by using R and considered it as Model B.

WPI Model B
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CPI Model B

(ii) Now, to make another model A which is log transformation of the original
model and note it as Model B. This is done so that the approximation of the
model becomes a Normal distribution for better representation of the data
and also plot it in R.
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WPI Model A

CPI Model A

22



(iii) Decompose the dataset to see the components present in it.

WPI Model A

WPI Model B
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CPI Model A

CPI Model B
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(iv) Find the ACF and PACF of both the models to find the parameters of the
models.

ACF of WPI Model A

PACF of WPI Model A
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ACF of WPI Model B

PACF of WPI Model B
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ACF of CPI Model A

PACF of CPI Model A
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ACF of CPI Model B

PACF of CPI Model B
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(v) Perform Augmented Dickey-Fuller Test to see the stationarity of the data.We
can only use this data for model parameter selection only if stationarity is
valid.
Augmented Dickey-Fuller Test for WPI Model A
data: wpi$model_a
Dickey-Fuller = -0.70575, Lag order = 7, p-value = 0.97
alternative hypothesis: stationary

Augmented Dickey-Fuller Test for WPI Model B

data: wpi$model_b
Dickey-Fuller = -1.125, Lag order = 7, p-value = 0.9185
alternative hypothesis: stationary

Augmented Dickey-Fuller Test for CPI Model A

data: cpi$model_a
Dickey-Fuller = -1.2405, Lag order = 7, p-value = 0.8996
alternative hypothesis: stationary

Augmented Dickey-Fuller Test for CPI Model B

data: cpi$model_b
Dickey-Fuller = -1.8216, Lag order = 7, p-value = 0.99
alternative hypothesis: stationary

(vi) As, the data was not stationary (because the p-value is greater than that of
0.05. So, we can conclude that the datasets is not stationary)we will go for
the First Differencing to detrend the data. Plot This dataset as well.
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WPI Model A

WPI Model B
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CPI Model A

CPI Model B
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(vii) Again, perform Augmented Dickey-Fuller Test to see the stationarity of the
data.

Augmented Dickey-Fuller Test for differenced WPI Model A
data: diff( wpi$model_a)
Dickey-Fuller = -8.9891, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Augmented Dickey-Fuller Test for differenced WPI Model B

data: diff( wpi$model_b)
Dickey-Fuller = -7.3462, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Augmented Dickey-Fuller Test for differenced CPI Model A
data: diff( cpi$model_a)
Dickey-Fuller = -9.9001, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Augmented Dickey-Fuller Test for differenced CPI Model B

data: diff( cpi$model_b)
Dickey-Fuller = -9.5402, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

As, the p-value is smaller than 0.05 we reject the Null Hypothesis and can say
that the dataset is stationary.
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(viii) Then plot the ACF and PACF for the first differenced models.

ACF of WPI Model A

PACF of WPI Model A
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ACF of WPI Model B

PACF of WPI Model B
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ACF of CPI Model A

PACF of CPI Model A
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ACF of CPI Model B

PACF of WPI Model B
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(ix) As we can notice a periodicity over at every twelfth phase, we will try to find
ACF and PACF with lag 12 also.

ACF of CPI Model A

PACF of CPI Model A
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ACF of CPI Model B

PACF of CPI Model B
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ACF of WPI Model A

PACF of WPI Model A
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ACF of WPI Model B

PACF of WPI Model B
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We can see the patterns for the ACF of the seasonal difference models are not
clear. We will select the SARIMA model with Indicator Variables i.e.,

yi = µ+
11∑
s=1

αsIs,i +

p∑
j=1

∅jyi−j +

q∑
j=1

θjεi−j + εi

Where as and Is,l is indicator variable which is 1 if it is in the sth month
where s = 1 means April, s = 2 means May and so on till s = 11 means
February and the s=12 is not added as it is a dummy trap as we have an
intercept value in the equation.

Now, the fitted model is as follows:

WPI Model A,

Series: differenced_model _ a

Regression with ARIMA(1,0,1) errors

Coefficients:
ar1 ma1 intercept a1 a2 a3 a4

0.3661 0.0874 0.0099 -0.0028 -0.0009 0.0001 -0.0029
s.e. 0.1156 0.1277 0.0010 0.0011 0.0013 0.0014 0.0014

a5 a6 a7 a8 a9 a10 a11
-0.0057 -0.0066 -0.0089 -0.0121 -0.0055 -0.0078 -0.0059

s.e. 0.0015 0.0015 0.0015 0.0014 0.0014 0.0013 0.0011

sigma2 = 3.626e-05: log likelihood = 1824.15 AIC=-3618.3 AICc=-3617.3
BIC=-3555.33
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WPI Model B,

Series: differenced_model_b

Regression with ARIMA(1,0,1) errors

Coefficients:
ar1 ma1 intercept a1 a2 a3 a4

0.4739 0.0964 10.8898 -4.1633 -1.6571 -1.2837 -4.0045
s.e. 0.0739 0.0827 1.5488 1.4978 1.8973 2.0579 2.1282

a5 a6 a7 a8 a9 a10 a11
-5.1151 -7.1320 -8.7492 -14.0753 -7.0717 -9.3385 -5.8039

s.e. 2.1579 2.1659 2.1574 2.1269 2.0552 1.8915 1.4860

sigma2 = 71.8: log likelihood = -1742.58 AIC=3515.16 AICc=3516.17
BIC=3578.14

sigma2 estimated as 69.76: log likelihood = -1742.58, aic = 3515.16
AICc=3516.17 BIC=3578.14

CPI Model A,

Series: differenced_model_a

Regression with ARIMA(1,0,1) errors

Coefficients:
ar1 ma1 intercept a1 a2 a3 a4

0.0857 0.2261 0.0085 0.0003 0.0033 0.0085 -0.0021
s.e. 0.1536 0.1510 0.0010 0.0012 0.0014 0.0014 0.0014

a5 a6 a7 a8 a9 a10 a11
-0.0026 0.0010 -0.0030 -0.0125 -0.0063 -0.0082 -0.0055

s.e. 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0012

sigma2 = 3.606e-05: log likelihood = 1825.57 AIC=-3621.15 AICc=-3620.14
BIC=-3558.17
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CPI Model B,

Series: differenced_model_b

Regression with ARIMA(1,0,1) errors

Coefficients:
ar1 ma1 intercept a1 a2 a3 a4

0.4750 -0.1609 12.4910 -1.9447 1.9247 13.0737 -5.7743
s.e. 0.1711 0.1985 2.0936 2.4326 2.7240 2.8509 2.9081

a5 a6 a7 a8 a9 a10 a11
-5.5274 1.0892 -5.7822 -18.1250 -7.8897 -13.5235 -8.1628

s.e. 2.9325 2.9391 2.9320 2.9069 2.8484 2.7187 2.4215

sigma2 = 164.5: log likelihood = -1946.34 AIC=3922.67 AICc=3923.68
BIC=3985.65

Then we see the fit of it with the original data and we observe that they are
almost similar.

WPI Model A
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WPI Model B

CPI Model A
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CPI Model B

(x) Now we check the forecasting accuracy of the fitted model.

CPI Model B

$pred

Time Series:

Start = 493 End = 503 Frequency = 1

[1] 13.271788 15.710244 26.179586 7.008715 7.102364 13.646096 6.740112
-5.619109 4.608403 -1.029137 4.329852

MAPE ← 1.545625444
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predicted values actual values
4287.575616 4292.099
4303.28586 4331.247
4329.465446 4370.396
4336.474161 4377.513
4343.576525 4388.19
4357.222621 4445.134
4363.962733 4473.605
4358.343624 4462.928
4362.952027 4452.252
4361.92289 4448.693
4366.252742 4484.282

CPI Model A

$pred

Time Series:

Start = 493 End = 503 Frequency = 1

[1] 0.0074161848 0.0116858141 0.0169178643 0.0063754340 0.0058218335
0.0094110263 0.0054308160 -0.0040211919 0.0021173771

[10] 0.0002121588 0.0029799769

MAPE ← 0.98176
predicted values actual values

3.638282 3.63267
3.649967 3.636613
3.666885 3.640521
3.673261 3.641227
3.679083 3.642285
3.688494 3.647885
3.693924 3.650658
3.696042 3.64962
3.698159 3.64858
3.698371 3.648232
3.701351 3.651693
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WPI model A

Time Series:

Start = 493

End = 504

Frequency = 1

[1] 0.0074161848 0.0116858141 0.0169178643 0.0063754340 0.0058218335
0.0094110263 0.0054308160 -0.0040211919 0.0021173771

[10] 0.0002121588 0.0029799769 0.0084600679

MAPE ← -0.664974951
predicted values actual values
3.448138337 3.443673
3.459824151 3.44628
3.476742015 3.448871
3.483117449 3.453368
3.488939283 3.458135
3.498350309 3.468442
3.503781125 3.477605
3.499759933 3.476394
3.50187731 3.477907
3.502089469 3.482414
3.505069446 3.492751
3.513529514 3.501706
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WPI model B

Time Series:

Start = 493

End = 504

Frequency = 1

[1] 23.916093 17.378144 13.465867 8.714283 6.641410 4.168477 2.335259
-3.093199 3.861840 1.572082 5.095805 10.894493

MAPE ← 4.291307478
predicted values actual values
2782.728383 2777.622
2800.106527 2794.342
2813.572394 2811.063
2822.286677 2840.323
2828.928087 2871.673
2833.096564 2940.643
2835.431823 3003.343
2832.338624 2994.983
2836.200464 3005.433
2837.772546 3036.784
2842.868351 3109.934
2853.762844 3174.724
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4. Conclusion

1. MAPE of WPI Model A ← -0.664974951

2. MAPE of WPI Model B ← 4.291307478

3. MAPE of CPI Model A ← -0.98176

4. MAPE of CPI Model B ← 1.545625444

The Mean Absolute Percentage Error is below 5% for all the
fitted models forecasted values so we can say it was a good fit and
ARIMA(1,1,1) with seasonal Dummies model can be used for
forecasting the future values of the CPI and WPI indices. While
studying the growth rate we have seen the huge inflation in the
economic market of India from the initial years 1970-71. Overall it
gives us a good knowledge about the future of Indian market
considering that it is turning to be a huge power in the economic field.
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